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Risk Measures and Portfolio Construction in Different Economic Scenarios
(Pengukuran Risiko dan Penjanaan Portfolio dalam Senario Ekonomi Berbeza) 
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ABSTRACT

This paper compared the composition and performance of portfolios constructed by employing different risk measures 
utilizing the Malaysian share market data in three diverse economic scenarios. The risk measures considered were the 
mean-variance (MV) and their alternatives; the semi-variance (SV), mean absolute deviation (MAD) and conditional value 
at risk (CVAR). The data were divided into three sub-periods representing the growth period in the economy, financial crisis 
and the recovery period. The results of this study showed different optimal portfolios’ performances and compositions 
for the three economic periods. Nevertheless, among the risk models tested, CVAR(0.99) model gave the highest portfolio 
skewness. High skewness means that the probability of getting large negative returns is decreased. As a conclusion, for 
the Malaysian stock market, the CVAR(0.99) model is the most appropriate portfolio optimization model for downside 
risk aversion investors in all three economic scenarios. 
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ABSTRAK

Kertas ini membandingkan komposisi dan prestasi portfolio yang dibina menggunakan pengukuran risiko berlainan ke 
atas data pasaran saham Malaysia dalam tiga senario ekonomi berbeza. Ukuran risiko yang dipertimbangkan ialah 
min-varians (MV) dan alternatifnya; semi-varians (SV), min sisihan mutlak (MAD) dan nilai bersyarat pada risiko (CVAR). 
Data dibahagi kepada tiga sub-tempoh yang mewakili tempoh pertumbuhan ekonomi, krisis kewangan dan tempoh 
pemulihan. Keputusan kajian menunjukkan prestasi dan komposisi portfolio yang optimum adalah berbeza bagi tiga 
tempoh ekonomi tersebut. Namun begitu, daripada model risiko yang diuji, model CVAR(0.99) memberikan kepencongan 
portfolio tertinggi. Kepencongan tinggi bermakna kebarangkalian mendapat pulangan negatif yang besar berkurangan. 
Kesimpulannya, untuk pasaran saham Malaysia, model CVAR(0.99) merupakan model pengoptimuman portfolio yang 
paling sesuai untuk pelaburan penghindaran risiko ke bawah dalam ketiga-tiga senario ekonomi.

Kata kunci: Kepencongan; pasaran saham; pengoptimuman; pulangan; varians

INTRODUCTION

Portfolio selection models were originated from the 
seminal work of Markowitz (1952). Markowitz model 
consists of allocating capital over a number of available 
assets with the objective to maximize the return on the 
investment while minimizing the risk associated with the 
investment. Markowitz measured the risk associated to 
the return of investment that deviated from the mean of 
the return distribution, the variance and in the case of a 
portfolio of assets, the level of risk was estimated using the 
covariance between all pairs of investments. The novelty of 
Markowitz mean-variance (MV) model is the measurement 
of the portfolio risk via the multivariate distribution of 
returns of all assets. 
	 Markowitz’s mean-variance model became the basis 
of many other models that use its fundamental assumption 
(Bodie et al. 2011; Elton et al. 2007). These classical 
models, as known today, give the portfolio’s expected 
return as the linear combination of the participations of all 
assets in the portfolio and its expected returns. However, 
the portfolio risk measure varies, often it is based on the 

moments about the mean of the linear combination of the 
participations and the time series of returns of its assets. 
In spite of the classical models favorable reception, their 
fundamental assumption has been intimidated in many 
ways by actual data. Fama (1965), Kon (1984), Prakash 
et al. (2003) and Samuelson (1970) documented that often 
the series of returns’ distribution depart from normality, 
exhibiting kurtosis and skewness. These factors cause the 
variance of the returns to be an inappropriate measure of 
risk. Arditti (1967), Kraus and Litzenberger (1976), Li et 
al. (2010), Prakash et al. (2003), Samuelson (1970) and 
Tanaka and Guo (1999) argued that unless there were 
evidences that the returns were symmetrically distributed 
or that higher moments were irrelevant to the investors’ 
then higher moments could not be neglected. It is a stylized 
fact that the distributions of many financial return series 
are non-normal, with the existence of skewness and/or 
kurtosis.
	 The limitations of the MV models help develop various 
alternative models. As extension of variance, semi-variance 
was proposed to measure risk so that only returns below 
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expected value were measured as risk (Markowitz 1959). 
Semi-variance is a widely used measure of total downside 
risk combining into one measure information provided by 
two statistics, variance and skewness. The semi-variance 
measures the volatility of the returns that falls below the 
average return. Given that rational investors are more 
receptive to downside losses compared with upside gains, 
the semi-variance of returns is a more appealing measure 
of risk (Chow & Denning 1994; Grootvel & Hallerbach 
1999; Markowitz 1993). 
	 Konno and Yamazaki (1991) proposed the mean 
absolute deviation (MAD) model. Instead of variance, they 
employed the absolute deviation as a measure of risk. The 
MAD model is said to be able to measure risk appropriately. 
Unlike MV model which is a quadratic programming 
problem, MAD model is a linear programming problem 
(Konno & Yamazaki 1991, 2001). The MAD portfolios 
have fewer assets (Simaan 1997) and the model gives 
better efficient frontier than the MV model (Liu & Gao 
2006). Rockafellar and Uryasev (2000) introduced the 
condition value at risk (CVAR) model. The CVAR model was 
applied by Krokhmal et al. (2002) to study the portfolio 
optimization. They found that the CVAR model was efficient 
for computing large (hundreds or thousands) of assets to 
be combined in a portfolio. 
	 The main objective of this study was to analyze the 
compositions and performances of the optimal portfolios by 
employing four different risk measures; the variance, semi-
variance, absolute deviation and conditional value at risk 
on three diverse economic sub-periods. The period of study 
is divided into three sub-periods representing the growth 
period in the economy, financial crisis and the recovery 
period. This study also aimed to determine whether the 
same risk measure applies in all three sub-periods or 
different risk measure suits different sub-period. This 
paper is organized as follows. The next section discusses 
the concepts and mathematical models of the four risk 
measures; variance, semi-variance, absolute deviation and 
conditional value at risk. Section 3 presents the empirical 
evidence on real data from the Malaysian Stock Market. 
Finally, some concluding remarks are provided.

DATA AND METHODOLOGY

RISK MEASURES

The MV model proposed by Markowitz (1952) employed 
variance as the risk measure and mean return as expected 
return. Variance measures the deviation above and below 
the mean. This model not only penalizes the downside 
deviation but also the upside deviation. However, the 
upside deviation is desirable for the investors because they 
wish to gain in their investment (Chow & Denning 1994). 
The objective of this model is to minimize the portfolio 
variance. The MV model is a quadratic programming model. 
The mathematical model is as follows:

	 minimize	
	

	 subject to	

		
 				     			    

		  xj ≥ 0,	 (1) 

where σij is the covariance between assets i and j, xj is the 
amount invested in asset j, rj is the expected return of asset 
j per period and ρ is a parameter representing the minimal 
rate of return required by an investor.
	I nstead of using the variance, Markowitz (1959) 
proposed semi-variance (SV) as risk measure. Semi-
variance is the downside risk measure which focuses on 
the deviation below the mean return. This model only 
penalizes the downside deviation and not the upside 
deviation. Therefore, this model matches investor’s 
perception towards risk better as investors will have less 
downside risk exposure (Grootvel & Hallerbach 1999). 
The semi-variance model is presented as:

	 minimize	
	
	 subject to	 E(Rp) = μ,

		  ,
 	  			    			    
		  xj ≥ 0,	 (2) 

where T is the number of periods, Rpt  
is the portfolio return 

at period t, E(Rp) is the mean return and xj is the amount 
invested in asset j.
	 Konno and Yamazaki (1991) proposed the mean 
absolute deviation (MAD) model using absolute deviation 
as risk measure to replace variance. This model is a linear 
programming model which can easily be solved as there 
is no need to calculate the covariance matrix as compared 
to the MV model. The MAD model can solve large scale 
portfolio optimization problem because the optimal 
portfolio consists of at most 2T+2 assets regardless of the 
sample size (Feinstein & Thapa 1993). The mathematical 
model is as follows:

	 minimize	 	
	
	 subject to	 	
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		  xj ≥ 0,	 (3)

where yt is the continuous variable representing the 
deviation between the portfolio mean return and portfolio 
return at time t, T is the number of period, r jt is the 
realization of random variable Rj during period t, rj is 
the expected return of asset j per period, ρ is a parameter 
representing the minimal rate of return required by an 
investor and xj is the amount invested in asset j.
	 The conditional value at risk (CVAR) model has 
been proposed by Rockafellar and Uryasev (2000). The 
CVaR is also known as mean excess loss, mean shortfall 
or tail VaR. The CVAR can be defined as the conditional 
expectation of loss above that amount α at a specified 
probability level β (Lima et al. 2011). CVAR satisfies the 
four properties of coherent risk which are: the wealth at 
risk declines when an amount of riskless wealth is added; 
more wealth is preferred as compared to less wealth; the 
aggregated risk of two investments is less than the sum 
of the two associated single risk and risk must also grow 
with the same proportionality when the wealth at risk is 
multiplied by a positive factor (Szegö 2002). This model 
is a linear programming model. The mathematical model 
is given as follows:

	 minimize	 	

	 subject to 	 zt ≥ 0, t = 1,2,…,T,	
 
		
	

		
		
		  xj ≥ 0,	 (4) 

where α is the lowest amount of loss, β is the probability 
that the loss will not exceed α, T is the number of period, 
zt is the variable, rjt is the realization of random variable 
Rj during period t, xj is the amount invested in asset j and 
rj is the expected return of asset j. 
	I n this study, we follow the framework of (4) with 
the risk confidence levels chosen are β = 0.99 and β 
= 0.95. Investors seldom experience a loss exceeding 
VaR(X) when β is 0.99 as compared with 0.95. CVAR(0.99) 
means investors have greater downside risk aversion than 
CVAR(0.95). Konno et al. (2002) and Rockafellar and 
Uryasev (2000) give the definition of CVAR as:

	 CVAR(β) = E[L(X)⎜L(X) ≥VaR(X)],

where L(X) is the loss function and β is the probability 
level.

DATA

The data for this study consists of the weekly returns 
of twenty-four shares included in the Kuala Lumpur 
Composite Index (KLCI) drawn from Malaysian Stock 
Market. KLCI is the main index for Malaysian Stock Market 
acting as a barometer that measures the performance of 
the major capital and industry segments of the Malaysian 
and regional markets. Furthermore, the up and down 
movements of KLCI reflect how investors feel about the 
economy. 
	 Based on the Malaysian quarterly gross domestic 
product (GDP) growth, this study divides the economic 
periods into three sub-period; period from January 1994-
June 1997 represents the economic growth, period from 
July 1997-December 2001 represents the economic crisis 
and period from January 2002-June 2008 is the recovery 
period.
	 Employing models (1) – (4) presented above, the 
optimal portfolios are constructed for each sub-period. The 
average risk free rate from January 1994 to June 2008 is 
calculated to be 0.00074. Thus this value is set to be the 
investor’s minimum required rate of return in this study. 
Portfolio mean return is calculated as follows:

	 Portfolio mean return = .		  (5)

EMPIRICAL RESULTS

Portfolio performances

The summary statistics of the optimal portfolios for the 
three economic periods are shown in Table 1.
	 The minimum required return of 0.00074 set in this 
study is achieved for all the models. This means that the 
portfolios constructed were able to generate returns of at 
least equivalent to the risk free return. The mean returns 
were highest during the recovery period for all portfolios 
generated by all four risk measures. On the other hand, as 
shown by the portfolios’ variances during the economic 
crisis investors incur more risks. Portfolios constructed by 
CVAR(0.99) model gave the highest mean return for period 
during the economic growth - mean return is 0.00082 
and during the recovery period, mean return is 0.002691. 
During the economic crisis, CVAR(0.95) portfolio gave the 
highest portfolio with a mean return of 0.0011. 
	 This study supports the earlier studies done by Jaaman 
et al. (2011) and Saiful Hafizah et al. (2011) that variance 
is not an appropriate risk measure for Malaysian market. 
The CVAR is the downside risk that focuses on the downside 
deviation below the mean return which is a better match 
for investor’s perception against risk. As shown by the 
skewness statistics, CVAR(0.99) model provides the highest 
skewness in all three period; during period of economic 
growth skewness is 0.944132, skewness is 0.457970 during 
the economic crisis and 0.013152 during the recovery 
period. Positive skewness (right skewed) is desirable for it 
decreases the probability of getting large negative returns, 
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hence the CVAR(0.99) is the most appropriate risk measure 
to control downside risk. As concluded by Chunhachinda 
et al. (1997), Lai (1991) and Prakash et al. (2003) investors 
are willing to trade expected returns (mean returns) and 
variance for the skewness. According to Arditti (1967), 
risk averse investor was willing to accept lower expected 
portfolio return in order to gain the benefit of increasing 
portfolio’s skewness.

Portfolio compositions

An investor can reduce risk of his investment by spreading 
it over a number of securities. The question arises if 
investor is not constrained to a single security but instead 
is able to form a diversified portfolio, how then will he 
allocate his fund among the various alternatives. In this 

study four models are employed to construct optimal 
portfolios from twenty-four available firms. Tables 2, 3 and 
4 show the optimal portfolio compositions constructed for 
the three diverse economic periods. 
	A s shown in Tables 2, 3 and 4 the four risk models 
construct different optimal portfolio compositions for 
all three economic periods. Studies done in different 
time period possibly give different optimal portfolio 
compositions (Prakash et al. 2003). According to Byrne 
and Lee (2004) different portfolio compositions are due 
to the non-normality of the data and investor’s attitude 
towards risk. From the tables above it is deduced that 
during the period of economic growth (January 1994-June 
1997), MISC makes up the highest proportion in the optimal 
portfolios for all four risk measures with MV portfolio 
invests 25.24% of fund, SV portfolio invests 32.18%, 

Table 1. Summary statistics of optimal portfolios

Economic growth January 1994-June 1997
MV SV MAD CVAR(0.99) CVAR(0.95)

Mean return
Variance
Skewness

0.00074
0.000437
0.241677

0.00074
0.000456
0.713460

0.00074
0.000457
0.593782

0.00082
0.000543
0.944132

0.00074
0.00055
0.808798

Economic crisis July 1997-December 2001
MV SV MAD CVAR(0.99) CVAR(0.95)

Mean return
Variance
Skewness

0.001055
0.000918
-0.421947

0.000842
0.000941
-0.258700

0.00091
0.000946
-0.404051

0.000926
0.001437
0.457970

0.0011
0.001062
0.031774

Recovery period January 2002-June 2008
MV SV MAD CVAR(0.99) CVAR(0.95)

Mean return
Variance
Skewness

0.002282
0.0002

-0.449264

0.002181
0.000203
-0.300047

0.002313
0.000206
-0.548387

0.002691
0.000249
0.013152

0.002358
0.000217
-0.227901

Table 2. Optimal portfolio compositions for economic growth period

MV MAD SV CVAR(0.99) CVAR(0.95)
AMMB
BAT
KLK
LMCEMNT
MAS
MAYBANK
MISC
MMCCORP
PBBANK
PPB
PROTON
SHELL
SIME
TCHONG
TENAGA
TM
UMW

0.0000
0.1477
0.0775
0.0000
0.0812
0.0595
0.2524
0.0000
0.0522
0.0509
0.0220
0.1140
0.1181
0.0000
0.0065
0.0159
0.0022

0.0000
0.1171
0.0574
0.0000
0.0704
0.0368
0.4018
0.0000
0.0000
0.0309
0.0000
0.1209
0.1387
0.0000
0.0000
0.0000
0.0260

0.0000
0.1314
0.0472
0.0050
0.0788
0.0000
0.3218
0.0162
0.0611
0.0000
0.0000
0.1350
0.1386
0.0000
0.0000
0.0097
0.0551

0.0143
0.0830
0.0000
0.0755
0.0000
0.0000
0.3400
0.0000
0.0000
0.0074
0.0000
0.2083
0.1038
0.1124
0.0000
0.0000
0.0554

0.0619
0.0668
0.0000
0.0578
0.0017
0.0000
0.3266
0.0000
0.0000
0.0000
0.0045
0.2735
0.0839
0.1058
0.0000
0.0000
0.0176
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MAD 40.18%, CVAR(0.99) invests 34.00% and CVAR(0.95) 
invests 32.66% . 
	 During the economic crisis period, BAT invested the 
most where it was suggested that investor puts 37.88% of 
fund in BAT if he chooses to employ MV model, 37.22% 
if SV model is used, 38.63% if using MAD model, if 
CVAR(0.99) model is utilized then 26.44% of fund will 
be invested in BAT and 44.79% if CVAR(0.95) model is 
chosen.
	 During the recovery period, portfolio constructed 
employing CVAR(0.99) as the risk measure composed 
mostly of Shell (35.61%) while the portfolios generated 
using the other risk measures; CVAR(0.95), MV, SV and 
MAD, invested highly in BAT. 

Conclusion

This paper discussed the portfolio optimization models 
by employing variance, semi-variance, absolute deviation 
and conditional value at risk as risk measures. The optimal 
portfolios’ performances and compositions were compared 
for three different economic scenarios; economic growth, 
crisis and recovery. This study recorded different optimal 

portfolios’ performances and compositions results for 
the three economic periods. Among the risk models 
tested, the CVAR(0.99) model gives the highest portfolio 
skewness. High skewness means that the probability 
of getting large negative returns is decreased. Investors 
prefer positive/high skewness because positive skewness 
decreases the probability of getting large negative returns. 
From the findings of this study, it can be concluded that 
the CVAR(0.99) model is the most appropriate portfolio 
optimization model for downside risk aversion investors 
for all three economic scenarios. 
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